تاريخ : دو شنبه 22 آبان 1391برچسب:, | 18:8 | نویسنده : arian


تاريخ : شنبه 13 آبان 1391برچسب:, | 16:47 | نویسنده : arian

بیگانه (به فرانسوی: L'Étranger) نام رمانی از آلبر کامو است که در سال ۱۹۴۲ در انتشارات معروف گالیمار منتشر شد و متن آن از اصلی‌ترین آثار فلسفهٔ اگزیستانسیالیسم به شمار می‌آید.[نیازمند منبع]

 

خلاصهٔ داستان

خطر لوث‌شدن: آنچه در زیر می‌آید ممکن است قضیه یا پایان ماجرا را لو دهد!

این کتاب داستان یک مرد درونگرا به نام مرسو را تعریف می‌کند که مرتکب قتلی می‌شود و در سلول زندان در انتظار اعدام خویش است. داستان در دههٔ ۳۰ در الجزایر رخ می‌دهد.

داستان به دو قسمت تقسیم می‌شود. در قسمت اول مرسو در مراسم تدفین مادرش شرکت می‌کند و در عین حال هیچ تأثر و احساس خاصی از خود نشان نمی‌دهد. داستان با ترسیم روزهای بعد از دید شخصیت اصلی داستان ادامه می‌یابد. مرسو به عنوان انسانی بدون هیچ اراده به پیشرفت در زندگی ترسیم می‌شود. او هیچ رابطهٔ احساسی بین خود و افراد دیگر برقرار نمی‌کند و در بی تفاوتی خود و پیامدهای حاصل از آن زندگی اش را سپری می‌کند. او از این که روزهایش را بدون تغییری در عادت‌های خود می‌گذراند خشنود است.

همسایهٔ مرسو که ریمون سنته نام دارد و متهم به فراهم آوردن شغل برای روسپیان است با او رفیق می‌شود. مرسو به سنته کمک می‌کند یک معشوقهٔ او را که سنته ادعا می‌کند دوست دختر قبلی او است به سمت خود بکشد. سنته به آن زن فشار می‌آورد و او را تحقیر می‌کند. مدتی بعد مرسو و سنته کنار ساحل به برادر آن زن(«مرد عرب») و دوستانش برمی خورند. اوضاع از کنترل خارج می‌شود و کار به کتک کاری می‌کشد. پس از آن مرسو بار دیگر «مرد عرب» را در ساحل می‌بیند و این بار کس دیگری جز آن‌ها در اطراف نیست. بدون دلیل مشخص مرسو به سمت مرد عرب تیراندازی می‌کند که در فاصلهٔ امنی از او از سایهٔ صخره‌ای در گرمای سوزنده لذت می‌برد.

در قسمت دوم کتاب محاکمهٔ مرسو آغاز می‌شود. در این جا شخصیت اول داستان برای اولین بار با تأثیری که بی اعتنایی و بی تفاوتی برخورد او بر دیگران می‌گذارد رو به رو می‌شود. اتهام راست بی خدا بودنش را بدون کلامی می‌پذیرد. او رفتار اندولانت (اصطلاح روانشناسی برای کسی که در مواقع قرار گرفتن در وضعیت‌های خاص از خود احساس متناسب نشان نمی‌دهد و بی اعتنا باقی می‌ماند- از درد تأثیر نمی‌پذیرد یا آن را حس نمی‌کند) خود را به عنوان قانون منطقی زندگی اش تفسیر می‌کند. او به اعدام محکوم می‌شود. آلبر کامو در این رمان آغازی برای فلسفهٔ پوچی خود که بعد به چاپ می‌رسد، فراهم می‌آورد.

پایان خطر لوث‌شدن
بیگانه
L'Étranger
Camus23.jpg
نویسنده آلبر کامو
برگرداننده جلال آل‌احمد
ناشر Éditions Gallimard
تاریخ نشر ۱۹۴۲
تعداد صفحات ۱۸۴
زبان فرانسوی


تاريخ : شنبه 13 آبان 1391برچسب:, | 16:45 | نویسنده : arian

یگانه در بحث زیست فرازمینی، به هر یک از اعضای هر نژاد غیر انسانی با منشاء غیرزمینی گفته می‌شود.

بیگانه‌ها در فرهنگ عامه

بیگانه‌ها نقش بسیاری در فرهنگ عامهٔ امروز دارند که بخش بسیاری از آن به دلیل جنجال‌های بشقاب پرنده در دههٔ پنجاه میلادی و موج آثار اپرای فضایی بعد از آن است. مردان کوچک سبز (LGM)، ای-تی، زنومورفهای فیلم بیگانه، پرداتور و ... بیگانه محسوب می‌شوند.

منابع



تاريخ : شنبه 13 آبان 1391برچسب:, | 16:42 | نویسنده : arian

ماهواره

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
ماهواره مخابراتی میل‌استار

ماهواره[۱]، یا قمر مصنوعی، به دستگاه‌های ساخت بشر گفته می‌شود که در مدارهایی در فضا به گرد زمین یا سیارات دیگر می‌چرخند.

اهمیت ماهواره‌ها برای مخابرات و بررسی منابع زمینی و پژوهش و کاربردهای نظامی و جاسوسی روزافزون است. بخشی از پژوهشهای علمی و تخصصی که در آزمایشگاه‌های مستقر در فضا انجام می‌شود، هرگز نمی‌توانست روی کره زمین جنبه عملی به خود گیرد.

نخستین ماهواره فضایی جهان اسپوتنیک-۱ (به معنی همسفر-۱ به زبان روسی) بود که در تاریخ ۱۲ مهر ۱۳۳۶ (۴ اکتبر ۱۹۵۷) به مدار زمین پرتاب شد. پرتاب اسپوتنیک-۱ به مدار زمین آغازگر عصر فضا و مسابقه فضایی شد.

تاریخچه

ظاهرا نخستین اشاره به ماهواره در ادبیات، نوشته‌ای از ادوارد اورت هیل است. او در سال ۱۸۶۹ در داستانی بنام «ماه آجری» از ماهواره‌ای حامل انسان نام برده که به دور زمین می‌گردد.

ژول ورن نیز در داستان «میلیون‌های بگم» در سال ۱۸۷۹ از گلوله توپی نام می‌برد که بطور ناخواسته در مدار زمین به گردش درآمده‌است.

کنستانتین تسیولکوفسکی نیز در رساله خود بنام «اکتشاف فضای کیهانی با وسائل عکس‌العملی» در میان انبوهی از اندیشه‌های نو در مورد فضانوردی، از ماهواره نیز نام می‌برد.

در سال ۱۹۴۵ نویسنده مشهور بریتانیایی آرتور سی کلارک یکی از بزرگ‌ترین خالقان داستانهای علمی–تخیلی، برای اولین بار پیشنهاد قرار دادن یک ماهواره ارتباطی را در مدار ژئوسنکرون یا مدار کلارک که در فاصله تقریبا ۳۶۰۰۰ کیلومتری سطح زمین و بالای خط استوا قراردارد را جهت پوشش سیگنال‌های رادیویی و تلوزیونی داد. از این مدار امکان دسترسی به تقریبا ۴۰٪ سطح زمین وجود دارد.

ایده استفاده از ماهواره‌های ساخت دست بشر، برای اولین بار در پایان جنگ جهانی دوم بر سر زبان‌ها افتاد.

ماهواره‌ای که در مدار ژئوسنکرون و در بالای خط استوا و هماهنگ با سرعت زمین و با زاویه‌ای ثابت، حرکت می‌کند، قسمت مشخصی از سطح زمین را بطور ثابت پوشش می‌دهد، و از یک ایستگاه زمینی نیز بصورت یک نقطه ثابت، قابل رویت است.

ماه، خورشید، و دیگر ستارگان و سیارات منظومه شمسی باعث تاثیر گذاری بروی ماهواره در مدار خود می‌شود که احتمال جابجایی از مکان خود را دارد. برای جلوگیری از این مسیله، موتورهای مخصوصی که بوسیله ایستگاه‌های زمینی کنترل می‌شوند، کمک می‌کنند که ماهواره‌ها در مکان خود ثابت باقی بمانند.

جهت برقراری ارتباط از یک ایستگاه زمینی، معمولاً احتیاج به یک دیش بزرگ که بنام Uplink Antenna معروف است، می‌باشد و باعث تمرکز اطلاعات ارسالی به ماهواره می‌شود.

در ارتباط بین ماهواره و ایستگاه زمینی معمولاً از دو نوع موج و فرکانس متفاوت استفاده می‌شود. یکی برای Uplink و دیگری برای Downlink. دیش نصب شده بروی ماهواره، سیگنال ارسالی ازایستگاه زمینی را دریافت کرده و به یک دستگاه گیرنده می‌رساند و پس از یک سری پردازش، به فرستنده ماهواره انتقال می‌دهد و از طریق آنتن فرستنده ماهواره، مجدداً به سمت زمین باز تابش داده می‌شود.

سیگنال ارسالی به سطح زمین، بوسیله دیش‌های معمولی، دریافت و جمع آوری شده و به دستگاه گیرنده ماهواره، از طریق ال ان بی، انتقال پیدا می‌کند. قدرت سیگنال دریافتی بر روی زمین، نسبت به فاصله و زاویه و... ماهواره و نقطه گیرندگی، متفاوت بوده و بصورت یک الگوی خاص به نام سایه ماهواره یا footprint معرفی می‌شود.

همیشه قدرت سیگنال ماهواره در مرکز سایه، بیشترین مقدار را دارا می‌باشد و در گوشه‌ها، از کمترین مقدار، برخوردار است. توجه به این نکته لازم است که دریافت سیگنال در خارج از سایه، احتیاج به دیش‌های بزرگ تر، دارد. امواج سانتی متری، جهت ارسال سیگنال ماهواره به زمین، مورد استفاده قرار می‌گیرد که محدوده فرکانسی آنها بین ۳-۳۰ MHz می‌باشد.

دلیل اصلی استفاده از این امواج رادیویی کوتاه، انتشار راحت امواج و تاثیرات کم نویز و مزاحمت‌های فرکانسی است. البته فرکانسهای بالاتر از ۱۵ Ghz، بصورت وحشتناکی بوسیله اکسیژن هوا و بخار آب تضعیف می‌گردند.

ماهواره‌ها، سیگنالهای ارسالی خود را بصورت قطبی و با دو حالت افقی و عمودی ارسال می‌کنند و گاهی اوقات نیز، بصورت دورانی، چپ گرد و راست گرد. در سیستمهای دیجیتال، امکان ارسال دیتا و چندین شبکه تلوزیونی و رادیویی بروی یک فرکانس وجود دارد.

واژه ماهواره

به سفینه‌ای گفته می‌شود که در مداری، به دور یک سیاره (معمولاً زمین) در حال گردش باشد.

در عصری که ما در آن زندگی می‌کنیم، ماهواره و تکنولوژی وابسته به آن، آنچنان در تاروپود جوامع بشری نفوذ کرده و به پیش می‌تازد، که نقش تعیین کننده آن در سیر تحولات تمدن بشری، قابل توجه‌است.

بخشی از تحقیقات و پژوهش های علمی - تخصصی، که در آزمایشگاه های مسقتر در فضا انجام می‌شود، هرگز نمی‌توانست روی کره زمین جنبه عملی به خود گیرد. این تحقیقات، که بسیار متعدد و متنوع است، در تخصص های پزشکی، داروسازی، مهندسی مواد، مهندسی ژنتیک و ده ها مورد دیگر، تا به حال دستاوردهای بسیار ارزنده‌ای را به جوامع بشری عرضه کرده‌است.

ماهواره‌ها که در فضا درحال گردشند، می‌توانند اطلاعات باارزشی در اختیار انسان قرار دهند که منجر به تحولات شگرفی، در زمینه‌های گوناگون شود. ماهواره‌های کشف منابع زمینی، هواشناسی، مخابراتی، پژوهشی و نظامی از این نوع می باشند.

تاریخچه ماهواره‌های مصنوعی

اولین ماهواره مصنوعی، اسپوتنیک ۱ (Sputnik ۱) بود که توسط شوروی در ۴ اکتبر ۱۹۵۷ شروع به کار کرد. که این باعث به راه افتادن یک رقابت فضایی بین شوروی و آمریکا شد.

آمریکا نیز اولین ماهواره خود را در ۳۱ ژانویه ۱۹۵۸ به فضا پرتاب کرد. بزرگترین ماهواره مصنوعی که هم اکنون به دور زمین می‌چرخد ایستگاه بین‌المللی فضایی می‌باشد.

نخستین پرتاب توسط کشور
کشور سال پرتاب نخستین ماهواره
Flag of the Soviet Union.svg اتحاد جماهیر شوروی (Flag of Russia.svg روسیه) ۱۹۵۷ اسپوتنیک ۱
Flag of the United States.svg ایالات متحده آمریکا ۱۹۵۸ اکسپلورر ۱
Flag of France.svg فرانسه ۱۹۶۵ آستریکس
Flag of Japan.svg ژاپن ۱۹۷۰ اسومی
Flag of the People's Republic of China.svg چین ۱۹۷۰ دونک فانگ هونگ ۱
Flag of the United Kingdom.svg بریتانیا ۱۹۷۱ پراسپرو ایکس-۳
Flag of India.svg هند ۱۹۸۰ روهینی
Flag of Israel.svg اسرائیل ۱۹۸۸ اوفک-۱
Flag of Ukraine.svg اوکراین ۱۹۹۵ سیچ-۱
Flag of Iran.svg ایران ۲۰۰۹ امید ۱

 

انواع ماهواره

 

ماهواره ضد سلاح

ماهواره ضد سلاح، که بعضی مواقع ماهواره‌های کشنده نیز خوانده می‌شوند، ماهواره‌هایی هستند که برای خراب کردن ماهواره‌های دشمن و دیگر سلاح‌های مداری و اهداف دیگر طراحی شده‌اند. که هم آمریکا و هم روسیه ، از این نوع ماهواره، در اختیار دارند.

 

ماهواره‌های ستاره‌شناختی

ماهواره‌های ستاره‌شناختی که برای مشاهده فاصله سیاره‌ها وکهکشان‌ها و دیگر اشیای خارجی فضا، استفاده می‌شود.

 

ماهواره‌های زیستی

ماهواره‌های زیستی، ماهواره‌هایی هستند که برای حمل ارگانیسم‌های زنده، طراحی شده‌اند. عموماً برای آزمایش‌های علمی استفاده می‌شوند.

 

ماهواره‌های مخابراتی

ماهواره‌های مخابراتی، ماهواره‌هایی هستند که برای اهداف ارتباط راه دور، در فضا قرار گرفته‌اند. ماهواره‌های مخابراتی مدرن، نوعاً از مدارهای زمین‌همگام، مولنیا (Molniya) و پایین‌زمینی استفاده می‌کنند.

 

ماهواره‌های مینیاتوری

ماهواره‌های مینیاتوری، ماهواره‌هایی هستند که دارای وزن کم و سایز کوچک، به طور غیر عادی می‌باشند. طبقه بندی جدیدی که برای گروه بندی این ماهواره‌ها استفاده می‌شود، عبارت است از :

  • ماهواره‌های کوچک (۵۰۰-۲۰۰ کیلوگرم)
  • ماهواره‌های میکرو (زیر ۲۰۰ کیلوگرم)
  • ماهواره‌های نانو (زیر ۱۰ کیلوگرم)

 

 

ماهواره‌های هدایت‌کننده

ماهواره‌هایی هستند که از پخش کردن سیگنال‌های رادیویی استفاده می‌کنند تا دریافت کننده‌های موبایل را در زمین فعال نمایند تا مکان دقیق آن‌ها مشخص شود.

 

ماهواره‌های اکتشافی

ماهواره‌های مشاهداتی زمین یا ماهواره‌های مخابراتی می‌باشند، که برای کاربردهای نظامی و جاسوسی مستقر شده‌اند.

 

ماهواره‌های زمین‌شناسی

ماهواره‌های زمین‌شناسی، ماهواره‌هایی هستند که برای نظارت بر محیط، هواشناسی و ساختن نقشه و... استفاده می‌شوند.

 

ایستگاه فضایی

ایستگاه فضایی، یک ساختار ساخته دست بشر می‌باشد که برای زندگی انسان در فضای خارج طراحی شده‌است. یک ایستگاه فضایی از انواع فضاپیماها به وسیله نقصش در نیرو محرکه زیاد یا امکانات بر زمین نشستن، متمایز می‌شود. به جای موتورهای دیگر به عنوان جا به جایی به و از ایستگاه استفاده می‌شود.

ایستگاه‌های فضایی برای باقی ماندن در مدار برای مدت کوتاهی طراحی شده‌اند، برای قسمتی از هفته یا ماه یا حتی سال.

 

ماهواره‌های تتر

ماهواره‌هایی هستند که به وسیله یک کابل که به آنها تتر (افسار) می‌گویند، به ماهواره‌های دیگر وصل می‌شوند.

 

ماهواره‌های هواشناسی

ماهواره‌های هواشناسی، که به طور ابتدایی برای نشان دادن آب و هوای کره زمین به کار می‌روند.

مدار ماهواره‌ها

مدار ماهواره

ماهواره در یک مسیر بسته که آن را مدار ماهواره می‌نامند، به دور زمین در گردش است.

این مسیر ممکن است دایره‌ای یا بیضی شکل باشد و مرکز زمین در مرکز این مسیر یا در یکی از کانون‌های بیضی آن قرار دارد.

ماهواره درصورتی که تحت تاثیر نیروهای گرانشی دیگری قرارنگیرد، همواره درصفحه‌ای به نام صفحه مداری به گردش خود به دور زمین ادامه می‌دهد.

حرکت این صفحه مداری به پریود مدار و زاویه صفحه با صفحه استوا بستگی دارد. اگر این زاویه صفر باشد، صفحه مداری منطبق بر صفحه استوایی زمین می‌شود.

عموما ماهواره‌ها بروی چهار نوع مدار که بستگی به نوع کاربرد ماهواره دارد، قرار می‌گیرند :

  • مدار پائین زمین
  • مدار قطبی
  • مدار زمین‌ایست
  • مدار بیضوی

 

 

ماهواره‌های مدار پائین زمین

به ماهواره‌هایی که در فاصله نسبتا کمی از سطح زمین قرار دارند، ماهواره‌های مدار پائین زمین گفته می‌شود. بیشترین ارتفاع این نوع ماهواره‌ها از سطح زمین بین ۳۲۰ تا ۸۰۰ کیلومتر است. مسیر حرکت این ماهواره‌ها از غرب به شرق و همجهت با دوران زمین بدور خود است.

بدلیل نزدیکی فاصله این نوع ماهواره‌ها از سطح زمین، سرعت حرکت این ماهواره‌ها خیلی بیشتر از سرعت دوران زمین بدور خود است.

گاهی سرعت این نوع ماهواره‌ها به ۲۷٬۳۵۹ کیلومتر در ساعت نیز می‌رسد. با این سرعت، این نوع از ماهواره‌ها می‌توانند در هر ۹۰ دقیقه، یک دور کامل بدور زمین بگردند.

برخی از ماهواره‌های هواشناسی، ماهواره‌های سنجش از دور و ماهواره‌های جاسوسی از این نوع‌اند.

 

ماهواره‌های مدار قطبی

ماهواره‌های مدار قطبی به نوعی از ماهواره‌هایی گفته می‌شود که مسیر مدار حرکت آنها عمود بر خط استوا و مسیر دوران از قطبهای شمال و جنوب می‌گذرد.

بعضی از ماهواره‌های هواشناسی، ماهواره‌های سنجش از دور و ماهواره‌های جاسوسی از این نوع‌اند.

 

ماهواره‌های مدار زمین‌ایست

این در حالت کلی بروی مدار زمین‌ایست و بر بالای خط استوا، در فاصله ۳۵۸۷۰ کیلومتری از سطح زمین قرار داند.

Geosynchronous orbit.gif

این نوع ماهواره‌ها در مکانی ثابت نسبت به زمین قرار دارند و هم‌فاز با دوران زمین بدور خود، می‌گردند و بدلیل همین ثبات دارای سایه‌ای ثابت (معروف به «جای‌پا») بر زمین هستند.

به مدار زمین‌هم‌زمان مدار زمین‌ایست و یا مدار کلارک نیز گفته می‌شود.

تمام ماهواره‌های مخابراتی و تلویزیونی از این نوع هستند.

 

ماهواره‌های مدار بیضوی

این ماهواره‌ها دارای مداری بیضوی هستند.

دو نقطه مهم از مدار این ماهواره‌ها نقطه اوج و نقطه حضیض آنها است : قسمتی که به سطح زمین نزدیک می‌شوند به نام نقطه حضیض نامیده می‌شود. قسمتی که از سطح زمین دور می‌شود به نام نقطه اوج نامیده می‌شود.

مسیر حرکت و دوران این نوع ماهواره مانند ماهواره‌های قطبی از سمت شمال به جنوب است.

چون اکثر ماهواره‌های مخابراتی در مدار زمین‌ایست قرار گرفته‌اند، این ماهواره‌ها هیچ پوششی بروی قطب‌های شمال و جنوب ندارند.

به همین دلیل و جهت پوشش قطب‌ها از ماهواره‌های مدار قطبی استفاده می‌شود. در واقع این نوع از ماهواره‌ها شمالی‌ترین و جنوبی‌ترین قسمت نیمکره‌ها را پوشش می‌دهند.

 

منابع

  1. ماهوارهاز واژه‌های مصوب فرهنگستان زبان و ادب فارسی به جای artificial satellite یا satellite در انگلیسی است. «فرهنگ واژه‌های مصوّب فرهنگستان: 1376 تا 1385، بخش لاتین». فرهنگستان زبان و ادب فارسی. ۲۰. بازبینی‌شده در ۲۴ ژانویه ۲۰۱۲.

سالگشت پرتاب نخستین ماهواره فضایی

ماهواره مخابراتی ایران

توضیحاتی درباره ماهواره اسپوتنیک-1

آشنایی با ماهواره‌ها



تاريخ : شنبه 13 آبان 1391برچسب:, | 16:41 | نویسنده : arian

با مشاهده ساده ستارگان می‌توانیم به سرعت اشکالات بینایی چشمانمان را دریابیم. انحرافاتِ معمولی که در چشمان ما وجود دارند شامل آستیگماتیسم (به علت عدم تقارن محور شکست عدسی چشم)نزدیکبینی (به علت رشد نا متعادل کره چشم{معمولاً به دنبال بلوغ }) و دور بینی (به علت زمخت شدن و ضعف عدسی در تطابق) می‌با شند.

یک ستاره ریزترین چیزی است که باید ببینیم. اما در جهان واقع ما برای ستاره ابعادی تشخیص می‌دهیم که ریشه در مشکل بینایی ما دارد. اگر بینایی چشم ما بی نقص بود ۳تاره(!) را نقطه بسیار ریزی می‌دیدیم. { برای دیدن شکل واقعی ستاره: در برگه آلومینیومی (Foil) سوراخ بسیار ریزی ایجاد کنید و از میان آن به ستاره پر نوری بنگرید.}

برای تعیین انحراف بیناییتان ستاره نسبتاً پرنوری را با" یک چشم" مشاهده کنید:

اگر آن را به صورت نقطه کامل و بسیار ریزی می‌بینید از معدود افرادی هستید که بینایی کاملی دارند.

اگر ستاره به صورت خطی با کمی کشیدگی دیده می‌شود چشمان شما در معمولاً مشکل



تاريخ : شنبه 13 آبان 1391برچسب:, | 16:40 | نویسنده : arian

اصطلاحات ستاره‌شناسی در پارسی میانه:

ستَویس یا سَدویس: به ظن قوی نام ستاره سهیل

تیشتَر: نام ستاره شِعرای یَمانی

روزآهنگ و شباهنگ: نامهای سیاره زهره در زبان عامیانه

دیگپایه: صورت فلکی شَلیاق

هَشتبَر: صورت فلکی تَنَیُّن، اژدها

موشپر و موشپار و موشپاریک: "ستاره"دنباله دار

نیزک و نیازک: شهاب ثاقِب

کَندَر: حرکت رِجعی

نوماه: هلال

پُرماه: بدر

نیم ماه [نیما] و نیم پُری: تربیع

سروش: نام ستاره عَیّوق

ماهیگیر: نام ستاره α دَلو

روجینه: ستاره وسطی کمربند جبار

چشم شیر: ستاره وسطی از سه ستاره که در گردن اَسَد اند.

 

نام پارسی میانه نام عربی نامگذاری بایر
اَبدُم صرفه بتا شیر
اسپور سماک اعزل  
پسیگ، پها دبران  
بزیسر هقعةالجوزا  
بَشن اِبط‌الجوزا  
رَخوَت ذراع مبسوطه  
تریشَگ، تَرَهه نثره  
اَزَره طرف  
پیش‌پرویز بُطَین  
کَهت میان فرغ مقدم  
کَهت بطن‌الحوت  
ماشاهه عوا  
مزده‌داد نسر طائر  
تیشتر، تیر شِعرای یمانی  
خسرو غفر  
پارند عیوق  
میان ظهرالاسد  
موری سعد بلع  
دِرَفشه (دِرَفشَگ) شوله  
نَخو قلب‌الاسد  
میخگاه جدی  
پدیوَر، پدیسپَر، پریسپر سماک اعزل  
سَدویس، دِل قلب‌العقرب (دبران و سهیل هم حدس زده‌اند)  
وَنَند نسر واقع  
وَر اوسط اکلیل  
سِرو(ی) زُبانا آلفا و بتا ترازو
یوغ سعد ذابح آلفا و بتا بره


تاريخ : شنبه 13 آبان 1391برچسب:, | 16:39 | نویسنده : arian

کیهان‌شناسی

نوشتار اصلی: کیهان شناسی فیزیکی


مشاهده ساختار عظیم عالم در علم کیهان شناسی فیزیکی مطرح می‌شود و گام موثری در درک بهتر پیدایش وتکامل کیهان محسوب می‌شود. درکیهان‌شناسی مدرن نظریه انفجار بزرگ مورد پذیرش قرار گرفته و اعلام شده که دربرهه‌ای از زمان انفجار بزرگ رخ داده با انبساط فضا درطول ۷/۱۳ گیگا سال جهان به شکل فعلی آن مبدل شده‌است . مفهوم انفجار بزرگ با کشف تشعشات مایکرویو پس زمینه کیهان درسال ۱۹۶۵ مطرح شد .

در طول مدت تکامل جهان چندین مرحله تکاملی را تجربه کرد . در ابتدا جهان به سرعت انبساطی کیهانی را تجربه کرد که شرایط اولیه را همگن کرد . سپس با تشکیل هسته انفجار بزرگ عناصر اولیه جهان آغازین تولید شدند.

هنگامی که اولین اتم‌های تشکیل دهنده فضا شفاف شدند توانستند امواجی را از خود ساطع کنند امواجی که امروزه به صورت تشعشات مایکرویو پس زمینه کیهان مشهور هستندسپس جهان درحال انبساط به علت عدم وجود منابع انرژی کیهانی وارد عصر تیره و تار خود شد. [۲۴]

با وقوع تغییرات اندک در چگالی اجرام، ساختار سلسله مراتبی ماده شکل گرفت . موادی که در نواحی چگال جمع شده بودند ابرهای گاز و ستارگان اولیه را تشکیل دادند. این ستاره‌های عظیم باعث ایجاد مجدد فرایند یونیزاسیون شده و بسیاری از عناصر سنگین جهان آغازین را به وجود آوردند.

توده‌های گرانشی به فیلامان تبدیل شده و فضایی بین این فیلامان‌ها به صورت خالی باقی ماند. به تدریج گرد وغبار با یکدیگر ترکیب شده واولین کهکشان‌ها به وجود آمدند. باگذشت زمان این کهکشان‌ها مواد بیشتری را به درون خود کشیدند و گروه‌ها و خوشه‌های کهکشانی و درنهایت ابرخوشههای عظیم شکل گرفتند. [۲۵]

یکی از مفاهیم اصلی در ساختار عالم، ماده تاریک یا انرژی تاریک است. ماده تاریک عنصر اصلی تشکیل دهنده دنیاست و ۹۶درصد چگالی جهان را تشکیل می‌دهد.امروزه تلاش زیادی برای درک فیزیک این ماده واجزا تشکیل دهنده آن صورت می‌گیرد . [۲۶]

اخترشناسی غیر حرفه‌ای (آماتوری)

نوشتار اصلی: اخترشناس آماتور

به طور کلی اخترشناسان آماتور با استفاده از تلسکوپهای ساخت خودشان بسیاری از پدیده‌های کیهانی واجرام سماوی را مشاهده می‌کنند. آنها بیشتر به دنبال رصد کردن ماه، سیارات، ستارگان، دنباله دارها، باران‌های شهابی وبسیاری از اجرام موجود درعمق فضا مانند خوشه‌های ستاره‌ای، کهکشان‌ها وسحابی‌ها هستند. یکی از شاخه‌های اخترشناسی آماتوری، عکس برداری کیهانی است که طی آن فرد آماتور از آسمان شب عسکبرداری می‌کند. بسیاری از افراد آماتور تلاش می‌کنند درمشاهده اجرام خاص تبحر لازم را کسب کنند و با توجه به علاقه فردی خود کار مشاهده خود را تخصصی ترکنند.[۲۷][۲۸] اغلب آماتورها مشاهدات خود را در طول موج‌های مرئی انجام می‌دهند و تعداد محدودی هم این کار را درمورد طول موج‌های نامرئی تجربه می‌کنند. آنها در تلسکوپ خود از فیلترهای فروسرخ استفاده می‌کنند ویا از تلسکوپ‌های رادیویی کمک می‌گیرند . کارل گوته یانسکی یکی از پیشگامان اخترشناسی رادیویی آماتوری است که در دهه ۱۹۳۰ آسمان را در طول موج‌های رادیویی مشاهده کرد .تعدادی از افراد آماتور از تلسکوپهای دست ساز یا تلسکوپ‌های رادیویی که برای تحقیقات اخترشناسی ساخته می‌شوند ودراختیار افراد آماتور قرار می‌گیرند استفاده می‌کنند. ("مثلاً " تلسکوپ یک مایلی ). [۲۹][۳۰]

اخترشناسان آماتور در پیشرفت‌های علم اخترشناسی سهم بسزایی داشته‌اند . این رشته یکی از معدود رشته‌هایی است که در آن افراد آماتور ایفای نقش می‌کنند. آنها می‌توانند دربرخی اندازه گیری‌ها شرکت کرده و در اصلاح مدار سیارات کوچک مفید واقع شوند. همچنین افراد آماتور درکشف دنباله دارها و رصد ستاره‌های متغیر نقش بسزایی دارند . پیشرفت‌های حاصل شده در زمینه تکنولوژی دیجیتال به افراد آماتور اجازه می‌دهد تا در رشته عسکبرداری کیهانی به موفقیت‌های چشمگیری دست پیدا کنند. [۳۱][۳۲][۳۳]

پرسش‌های بنیادین در اخترشناسی

اگرچه دررشته اخترشناسی تلاش‌های بسیاری برای درک بهتر طبیعت جهان ومحتوای آن صورت گرفته‌است اما هنوز سوالهای بی پاسخی در پیش رویمان قرار دارند شاید پاسخگویی به این سوالات مستلزم ساخت ابزارهای رصد جدید و پیشرفت‌های تازه در زمینه فیزیک نظریه و تجربی باشد.

  • آیا سیارات خاکی در اطراف بقیه ستارگان (به جز خورشید) هم قرار دارند ؟ اخترشناسان از وجود ستارگان بزرگ واجرامی در اطراف ستاره‌ها اطمینان حاصل کرده‌اند . بنابراین وجود سیارات خاکی کوچک‌تر محتمل به نظر می‌رسد .

[۳۴]

  • آیا در بقیه نقاط عالم حیات فرازمینی وجود دارد ؟ به طور خاص آیا انسان درکره‌های دیگر هم زندگی می‌کند؟ دراین صورت چگونه تناقض فرمی ( Fermi ) را توجیه می‌کنید ؟ وجود حیات درخارج از کره خاکی تبلیغات علمی و فلسفی بسیار مهمی را درپی دارد .[۳۵][۳۶]
  • جنس ماده تاریک و انرژی تاریک از چیست ؟ شناخت این مساله در درک تکامل عامل و سرنوشت آن بسیار مفیداست اما هنوز درباره آن چیزی نمی‌دانیم. [۳۷]
  • چرا دنیا به وجود آمد ؟ چرا برای مثال ثابت‌های فیزیکی با دقت تنظیم شده‌اند تا وجود حیات را تضمین کنند؟ چه چیزی باعث انبساط کیهانی شد و دنیا را همگن کرد ؟ [۳۸]

اسطرلاب

نوشتار اصلی: اصطرلاب
اسطرلاب ایرانی ساخته ی دانشمند بزرگ ایرانی غیاث الدین جمشید کاشانی که از بزرگترین منجمان و ریاضیدانان عصر خود و متعلق به سده هجدهم میلادی میباشد. صفحه گرد کوچکتر دارای ۱۳ میخچه یا پیکانک کمانی شکل است. جهت و اشاره پیکانک‌ها، موقعیت درخشان ترین و روشن ترین ستاره‌ها را نشان می‌دهند. نام ستاره‌ها در پایین هر پیکانک حک شده‌است. صفحه گرد بزرگتر به وسیله خطوط هماهنگ ترسیم شده‌است.
این اسطرلاب در موزه تاریخ علم کمبریج نگهداری می‌شود.[۳۹]
اسطرلاب مسطح سدسی، ساخت ایران-تبریز، ۱۳۷۰

اسطرلاب از ابزارهای قدیم نجوم و طالع‌بینی است. اسطرلاب وسیله بسیار کارآمدی در نجوم رصدی بوده و اکنون بیشتر برای کاربردهای آموزشی بکار می‌رود. این ابزار برای سنجش ارتفاع، سمت، بعد و میل خورشید و ستارگان، تعیین وقت در ساعات روز و شب، قبله و زمان طلوع و غروب آفتاب و بسیاری کاربردهای دیگر به‌کار می‌رفته‌است.




تاريخ : شنبه 13 آبان 1391برچسب:, | 16:37 | نویسنده : arian

روش‌های گردآوری داده

نوشتار اصلی: مشاهدات اخترشناسی


در اخترشناسی، اطلاعات موجود براساس شناسایی و تحلیل نور و انواع دیگر تشعشات الکترومغناطیسی شکل می‌گیرد. انواع دیگر پرتوهای کیهانی نیز مورد بررسی قرار می‌گیرند و تحقیقاتی در حال انجام است تا در آینده نزدیک بتوانیم امواج جاذبه گرانشی را شناسایی و تحلیل کنیم. امروزه، آشکارسازهای نوترینو در مشاهده نوترینوهای خورشید و نوترینوهایی که از ابرنواخترها ساطع می‌شوند کاربرد زیادی دارند. [۲][۳]

طیف الکترومغناطیسی می‌تواند اطلاعات زیادی راجع به اخترشناسی را در اختیارمان قرار دهد. در بخش‌هایی از طیف که فرکانس اندک است، اخترشناسی رادیویی، ساطع شدن امواجی با طول موجهای میلی متری و دکامتری را کشف می‌کند. گیرنده‌های رادیو تلسکوپی همانند گیرنده‌های رادیویی معمولی هستند اما حساسیت بسیار زیادی دارد. مایکرویوها بخش میلی متری طیف رادیویی را تشکیل می‌دهند و در مطالعات تشعشات مایکرویو پس زمینه کیهان کاربرد وسیعی دارند.

در ستاره‌شناسی فروسرخ و ستاره‌شناسی فرافروسرخ با آشکارسازی و تحلیل امواج فروسرخ (با طول موجی بزرگ‌تر از طول موج قرمز) سروکار داریم. معمولاً برای این کار از تلسکوپ استفاده می‌شود اما در کنار آن به یک آشکارساز حساس نیز احتیاج داریم. بخارآب موجود در جو زمین امواج فروسرخ را جذب می‌کند و بنابراین مراکز مشاهده امواج فروسرخ می‌بایست در مکان‌های بلند و خشک و یا خارج از جو کره زمین ساخته شوند. تلسکوپ‌های فضایی به انتشار گرما در جو زمین، شفافیت جو زمین حساس نیستند و وقتی از آنها استفاده می‌کنیم دیگر با دردسرهای مشاهده در طول موج‌های فروسرخ روبرو نمی‌شویم. مشاهدات فروسرخ در مشاهده مناطقی از کهکشان که پوشیده از گرد و غبار هستند بسیار کارآمد هستند.

تلسکوپ سوبارو (چپ) ورصدخانه کک (وسط) درماونا کیا، هر دو نموونه‌های از یک رصدخانه هستند که در طول موجهای نزدیک مادون قرمز و مرئی کار می‌کنند. تجهیزات تلسکوپ مادون قرمز ناسا(راست) نمونه‌ای از یک تلسکوپ است که رنها با طول موجهای نزدیک مادون قرمز کار می‌کند.

در طول تاریخ، اغلب داده‌های اخترشناسی با استفاده از اخترشناسی نور تهیه شده‌اند. در اخترشناسی نور، با استفاده از عناصر نوری (مانند آینه، عدسی، آشکارسازهای CCD و فیلم‌های عکاسی) طول موج‌های نور را در محدوده فروسرخ تا فرابنفش بررسی می‌کنیم. نور مرئی (طول موج‌هایی که توسط چشم انسان دیده می‌شوند و در محدوده ۴۰۰ تا ۷۰۰ نانومتر قرار دارند) در میانه این محدوده قرار دارد. تلسکوپ مهم‌ترین ابزار مشاهدات اخترشناسی است که دارای طیف نگار و دوربین‌های الکترونیکی است.

برای مشاهده منابع پرانرژی از اخترشناسی انرژی بالا کمک می‌گیریم که اخترشناسی اشعه X، اخترشناسی پرتو گاما، اخترشناسی فرابنفش (UV) و همچنین مطالعات مربوط به نوترینوها و پرتوهای کیهانی را شامل می‌شود. اخترشناسی رادیویی و نوری با استفاده از رصدخانههای زمینی انجام می‌شود زیرا در این طول موج‌ها، جو زمین به اندازه کافی شفاف است.

جو زمین در طول موج‌های مورد مطالعه در اخترشناسی اشعه X، اخترشناسی پرتو گاما، اخترشناسی UV و اخترشناسی فرا فروسرخ (به جز در مورد چند «پنجره» طول موج) شفافیت کافی را ندارد و بنابراین تحقیقات و مشاهدات در مورد این علوم باید از طریق بالنهای تحقیقاتی یا رصدخانه‌های فضایی صورت پذیرد. پرتوهای قوی اشعه گاما براساس رگبارهای هوایی عظیمی که تولید می‌کنند شناسایی می‌شوند و مطالعه پرتوهای کیهانی زیرمجموعه‌ای از اخترشناسی محسوب می‌شود.[۴]

اخترشناسی سیارات براساس مشاهدات مستقیم از طریق فضاپیماها و سفرهای فضایی و نمونه برداری از سیارات پیشرفت خوبی را تجربه کرده‌است. مأموریت‌های فضایی و استفاده از سیاره‌پیماهای مجهز به حس‌گرهای قوی به ما کمک می‌کند از مواد تشکیل دهنده سطح سیاره نمونه برداری کنیم و همچنین با استفاده از حس‌گرها مواد لایه‌های عمیق تر را شناسایی کرده و در نهایت مواد را برای بررسی بیشتر به زمین منتقل کنیم.

ستاره‌شناسی و مکانیک اجرام آسمانی

نوشتارهای اصلی: اخترشناسی و مکانیک اجرام آسمانی


یکی از قدیمی‌ترین زمینه‌های تحقیقاتی در علم اخترشناسی و همه علوم عالم، اندازه گیری موقعیت و مکان اجرام سماوی در آسمان است. همواره در طول تاریخ، درک مناسب از موقعیت خورشید، ماه، ستارگان و سیارات در تعیین موقعیت افراد بر روی زمین (ملوانان و کشتی‌ها) نقش داشته‌است.

اندازه گیری دقیق موقعیت مکانی سیارات به درک ما از نظریه انحراف وسعت داده و اکنون می‌توانیم در مورد گذشته و آینده سیارات با دقت زیاد اظهارنظر کنیم. علمی که به این مباحث می‌پردازد را علم مکانیک اجرام آسمانی گویند. امروزه با ردیابی اجرام آسمانی در نزدیکی زمین می‌توانیم احتمال برخورد این اجرام با یکدیگر یا جو زمین را بررسی کنیم.[۵]

اندازه گیری میزان سرعت زاویه‌ای ستاره‌های نزدیک به کره زمین یکی از اساسی‌ترین کارها در تعیین نردبان فاصله کیهانی است که برای اندازه گیری مقیاس جهان طراحی شده‌است. اندازه گیری سرعت زاویه‌ای ستاره‌های مجاور عامل مهمی در آگاهی از ویژگی‌های ستاره‌های دور محسوب می‌شود چرا که این ویژگی‌ها قابل مقایسه هستند. محاسبه سرعت شعاعی و حرکت واقعی سینماتیک حرکت این مجموعه اجرام در کهکشان راه شیری را آشکار می‌سازد. همچنین از یافته‌های اخترشناسی در اندازه گیری توزیع ماده تیره در کهکشان استفاده می‌شود.[۶]

در دهه ۱۹۹۰ (میلادی) روش اخترشناسی که در محاسبه تکانه‌های ستارگان به کار می‌رفت باعث کشف سیاره‌هایی از خارج از منظومه شمسی شد که به دور خورشید گردش می‌کنند.[۷]

مطالعات میان‌رشته‌ای

اخترشناسی با بسیاری از رشته‌های علمی مهم ارتباط تنگاتنگ دارد. برخی از این علوم عبارت‌اند از:

  • فیزیک کیهانی: مطالعه فیزیک جهان پیرامون شامل ویژگیهای فیزیکی (درخشندگی، چگالی، دما و ترکیب شیمیایی) اجرام آسمانی.
  • بیولوژی کیهانی: مطالعه پیدایش و تکامل سیستم‌های بیولوژیکی در دنیا.
  • اخترشناسی باستانی: مطالعه اخترشناسی قدیم در بافت فرهنگی آن با استفاده از مشاهدات باستان‌شناسی و مردم‌شناسی.
  • شیمی کیهانی: مطالعه مواد شیمیایی موجود در فضا به خصوص ابرهای گازی مولکولی و نحوه تشکیل، تعامل و مرگ آنها. بنابراین این رشته با رشته‌های شیمی و اخترشناسی مباحث مشترکی دارد.

پدیده‌های آسمانی

پدیده‌های آسمانی موضوعات اخترشناسی را تشکیل میدهد و بطور عمده شامل:

اخترشناسی خورشید

نوشتار اصلی: خورشید
تصویر ماورا بنفش از فتوسفرهای فعال خورشید که توسط تلسکوپ فضایی تریس (TRACE) گرفته شده‌است. (تصویر از ناسا).
غروب خورشید در مریخ

خورشید ستاره‌ای است که بیشترین تحقیقات علمی بر روی آن تمرکز یافته‌است. خورشید یکی از توالی‌های اصلی ستاره‌های کوتوله طبقه ستارگان G2V است که حدود ۶/۴ میلیارد سال عمر دارد. خورشید ستاره‌ای متغیر نیست اما در چرخه فعالیت آن تغییرات متناوبی صورت می‌گیرد که به حلقه نقطه‌ای خورشیدی معروف است. در واقع در هر ۱۱ سال در تعداد لکه‌های خورشیدی نوساناتی رخ می‌دهد. لکه هایخورشیدی نواحی هستند که در آنها دما کمتر از دمای میانگین خورشید است و فعالیت‌های مغناطیسی شدیدی در این مکان‌ها رخ می‌دهد.[۸]

میزان درخشندگی خورشید با افزایش عمر آن افزایش یافته‌است و از زمانی که به یک ستاره توالی اصلی تبدیل شد تاکنون به درخشندگی آن ۴۰ درصد افزوده شده‌است. همچنین در درخشندگی خورشید تغییراتی ایجاد می‌شود که اثرات قابل ملاحظه‌ای بر کره زمین دارد. کمینه ماندر، باعث ایجاد پدیده عصر یخبندان کوچک در قرون وسطی شده‌است.[۹] سطح خارجی خورشید را نورسپهر گویند. در قسمت بالایی این لایه منطقه‌ای با نام کروموسفر قرار دارد. این ناحیه هم توسط یک ناحیه گذرا که دمای آن به سرعت افزایش می‌یابد احاطه شده و در نهایت تاج‌های بسیار داغ و گدازنده خورشید قرار دارند.

در مرکز خورشید، دما و فشار کافی برای وقوع پدیده جوش هسته‌ای وجود دارد. در بالای این هسته، ناحیه‌ای به نام ناحیه تشعشع قرار دارد که در آن ماده پلاسما انرژی را با استفاده از تشعشات منتقل می‌کند. لایه بعدی ناحیه همرفت است که در آن ماده گازی شکل انرژی را با استفاده از جابجایی فیزیکی گاز منتقل می‌کند. گفته می‌شود این ناحیه همرفت عامل ایجاد نقاط خورشیدی هستند که در این نقاط فعالیت مغناطیسی شدیدی را ملاحظه می‌کنیم .[۸]

دانش سیارات

نوشتار اصلی: علم سیارات

این رشته اخترشناسی مجموعه سیارات، اقمار طبیعی، سیارات کوتوله، ستارگان دنباله‌دار، شبه ستارگان و دیگر اجرام سماوی که به دور خورشید می‌چرخند و همچنین سیارات خارج از سلطه خورشید را بررسی می‌کند. منظومه شمسی با استفاده از تلسکوپ‌ها و در نهایت سفینه‌های فضایی به خوبی مورد مطالعه قرار گرفته‌است. این اطلاعات بدست آمده منبع خوبی برای درک بهتر از نحوه پیدایش و تکامل این منظومه سیارات محسوب می‌شود اما هنوز باید تحقیقات را به طور گسترده ادامه دهیم.[۱۰]

نقطه سیاه رنگی که در بالای تصویر دیده می‌شود یک گردباد است که دیواره‌ای متحرک را در سطح مریخ ایجاد کرده‌است. این ستون متحرک و چرخان جو مریخ (که با گردبادهای زمینی (تورنادوها) قابل مقایسه‌است) نوار طولانی و سیاه رنگی را به وجود آورده‌است.

منظومه شمسی از سیارات داخلی، کمربند شبه ستاره و سیارات خارجی تشکیل شده‌است. سیارات خاکی عبارت‌اند از: تیر، زهره، زمین و مریخ. سیارات ابرگاز خارجی عبارت‌اند از: مشتری، زحل، اورانوس و نپتون.[۱۱]

این سیارات از یک صفحه دیسک مانند سیاره‌ای بدوی تشکیل شده‌اند که در اطراف خورشید قرار داشته‌است. به علت وجود جاذبه، برخورد و اتحاد، دیسک مجموعه‌ای‌هایی از ماده تبدیل شد که همان سیارات بدوی بودند. سپس فشار تشعشعات طوفان‌های خورشیدی بخش اعظم ماده را به حاشیه راند و تنها سیاراتی که از جرم کافی برخوردار بودند در جو گازی باقی ماندند. این سیارات در طی دورانی که در آن بمباران‌های شدیدی صورت می‌گرفت، و از شواهد آن می‌توان به دره‌های ناشی از بمباران در سطح ماه اشاره کرد، مواد موجود در اطراف خود را جذب یا آنها را دور ساختند. در طی این دوران احتمالاً برخی از سیارات بدوی با یکدیگر برخورد کردند و برای مثال نظریه برخورد بزرگ نحوه شکل گیری ماه را تشریح می‌کند.[۱۲]

وقتی سیاره به جرم مورد نظر و مناسب دست پیدا می‌کند، در طی پدیده تفکیک سیاره‌ای، مواد با چگالی مختلف در داخل سیاره پخش می‌شوند. در طی این فرآیند یک هسته سنگی یا فلزی تشکیل شده و اطراف آن را مواد مختلف احاطه می‌کنند. هسته می‌تواند حاوی مواد جامد یا مایع باشد و برخی از هسته‌های سیارات دارای میدان مغناطیسی مخصوص به خودهستند که جوآنها را از طوفان‌های خورشیدی مصون نگاه می‌دارد .[۱۳] گرمای داخلی ماه یا سیاره براثر برخورد مواد رادیواکتیو (مانند اورانیوم و توریم و۲۶Al ) و یا گرمای ناشی از مد تولید می‌شود. دربرخی از سیارات واقمار آنهاگرمای کافی برای وقوع پدیده‌هایی مانند آتشفشان و تکتونیک وجود دارد . سطح سیاراتی که دارای جو هستند دراثر حرکت آب وباد دچار فرسودگی می‌شود. اجرام کوچک‌تر که از گرمای ناشی از مد بهره مند نیستند به سرعت سرد می‌شوند واغلب فعالیت‌های عادی شان متوقف می‌شود.[۱۴]

اخترشناسی ستارگان (ستاره شناسی)

نوشتار اصلی: ستاره
سحابی سیاره‌ای مورچه. دفع گاز از ستاره مرکزی در حال مرگ برخلاف الگوهای بی نظم انفجارات معمولی الگوهای متقارن نشان می‌هد.

مطالعه ستارگان و تکامل ستارگان در درک بهتر از نحوه تکامل عالم بسیار بسیار مفید است .درک اختر فیزیک ستارگان با مشاهدات فضایی، درک نظریات مختلف و شبیه سازی کامپیوتری امکان پذیر است .

فرایند شکل گیری ستارگان درمحل‌هایی که حاوی گرد و غبارغلیظ هستند وبه ابرهای مولکولی عظیم یا سحابی سیاه شهرت دارند رخ می‌دهد. تکه ابرها درحالت ناپایداری وتحت تأثیر جاذبه ستارگان اولیه را تشکیل می‌دهند. براثر پدیده جوش هسته‌ای یک هسته داغ وبه اندازه کافی چگال تشکیل شده و درنهایت به یک ستاره توالی اصلی تبدیل می‌شود.[۱۵]

ویژگی‌های ستاره‌ای که به وجود آمده‌است به جرم اولیه ستاره بستگی دارد . هرچه جرم اولیه بیشتر بوده باشد، درخشندگی ستاره و سرعت مصرف سوخت هیدروژن در هسته آن بیشتر است . با گذشت زمان سوخت هسته بیشتری نیاز است و بنابراین هسته حجیم تر و چگال تر می‌شود. درنتیجه این واکنش‌ها یک غول قرمز تولید می‌شود که تا زمان مصرف شدن همه سوخت هلیم عمر می‌کند. ستاره‌های بزرگ در فرایندهای جوش هسته‌ای از عناصر سنگین تر هم استفاده می‌کنند و فازهای تکاملی دیگری به این فازها اضافه می‌شود.

سرنوشت ستاره به جرم آن بستگی دارد و ستارگانی که جرم آنها بیش از ۴/۱ برابر جرم خورشید است به ابرنواختر تبدیل می‌شوند درحالیکه ستارگان کوچک‌تر به سحابی‌های سیاره‌ای ودرنهایت به GetBC(58);

تاريخ : شنبه 13 آبان 1391برچسب:, | 16:36 | نویسنده : arian

تعداد آسمانها

از قرنهای چهارم تا ششم پیش از میلاد مسیح، اخترشناسان یونانی پی بردند که باید بیشتر از یک سایبان (آسمان) وجود داشته باشد. چون اوضاع نسبی ستارگان ثابت، که حول زمین حرکت می‌کنند، ظاهرا تغییری نمی‌کند، اما اوضاع نسبی خورشید، ماه و پنج جسم درخشان ستاره مانند که امروزه سیارات عطارد، زهره، مریخ، مشتری و زحل می‌گویند) تغییر می‌کنند. در قرآن مجید نیز، جایی که صحبت از حقیقت آسمان می‌کند، لفظ آسمان‌های هفتگانه بکار برده می‌شود. روشهای مختلف اندازه گیری فواصل کیهانی در حدود صد و پنجاه سال پیش از میلاد، هیپارکوس، فاصله زمین تا ماه را بر حسب قطر زمین بدست آورد. وی روشی را بکار برد که یک قرن پیش از او، بوسیله جسورترین اخترشناس یونانی آریستارکوس، پیشنهاد شده بود. آریستاکوس متوجه شده بود که انحنای سایه زمین، وقتی که از ماه می‌گذرد، باید ابعاد نسبی زمین تا ماه را نشان دهد. با پذیرش این نظر و به کمک روشهای هندسی می‌توان فاصله زمین تا ماه را بر حسب قطر زمین محاسبه کرد.

برای تعیین فاصله خورشید نیز، آریستاکوس، یک روش هندسی را بکار برد که از نظر تئوری درست بود. اما نیاز به اندازه گیری زاویه‌هایی چنان کوچک داشت که جز با استفاده از وسایل امروزی ممکن نبود. هر چند که ارقام وی درست نبود، اما او نتیجه گرفت که خورشید حداقل باید هفت برابر بزرگتر از زمین باشد و لذا گردش خورشید به دور زمین که در آن زمان رایج بود، غیر منطقی دانست.

ستاره‌شناسان بعدی حرکات اجرام آسمانی را بر مبنای این نظریه مورد مطالعه قرار دادند که زمین ساکن است و در مرکز عالم قرار دارد. نفوذ و سلطه این نظریه تا سال ۱۵۴۳، یعنی تا زمانی که کوپرنیک کتاب خود را منتشر کرد و با پذیرش عقیده آریستاکوس، زمین را برای همیشه از مرکز جهان بودن بیرون راند، حاکم بود.

یکی دیگر از روشهایی که با آن می‌توان فاصله‌های کیهانی را محاسبه کرد، استفاده از روش اختلاف منظر است.

روش دیگر استفاده از مثلثات است. بطلیموس با استفاده از مثلثات توانست فاصله راه را از روی اختلاف منظر آن تعیین کند و نتیجه‌اش با رقم پیشین، که بوسیله هیپارکوس بدست آمده بود، تطبیق می‌کرد.

البته امروزه روشهای مختلف دیگری که خیلی دقیقتر از روشهای فوق است، فاصله خورشید از زمین بطور متوسط تقریبا، برابر ۵‚۱۴۹ میلیون کیلومتر است. این فاصله میانگین را واحد نجومی (با علامت اختصاری A.U) می‌نامند و فاصله‌های دیگر منظومه خورشیدی را با این واحد می‌سنجند.

سیر تحولی و رشد

با گسترش روز افزون علم و ساخت تلسکوپهای دقیق، دانشمندان، در اندازه گیری ابعاد جهان روز به روز به نتایج جدیدتری نائل می‌شدند. با ساخته شدن و گسترش این وسایل اندازه گیری، دید بشر نسبت به جهان نیز تغییر یافت. به عنوان مثال با چشم غیر مسلح تقریبا می‌توانیم در حدود ۶ هزار ستاره را ببینیم، اما اختراع تلسکوپ ناگهان آشکار کرد که این فقط جزیی از جهان است.

هر چند با بوجود آمدن وسایل دقیق اندازه گیری، دانش نیز نسبت به جهان هستی، گسترش پیدا می‌کرد، اما نظریه‌های مختلفی توسط دانشمندان ارائه می‌گردد. از جمله دانشمندانی که نسبت به ارایه این نظریه‌ها اقدام کردند می‌توان به ویلیام هرشل (Wiliam Herschel)، ستاره‌شناس آلمانی‌تبار انگلیسی یا کوبوس کورنلیس کاپیتن (Jacobus cornelis kapteyn)، اخترشناس هلندی، شارل مسیر (Charles Messier) و هابل و … اشاره کرد. پایان جهان کجاست؟ سرانجام بعد از تحقیقات گسترده توسط پیچیده‌ترین تلسکوپها، دانشمندان دریافتند که:

غیر از کهکشان ما، کهکشانهای دیگری نیز وجود دارد. کهکشانهایی وجود دارند که جرم آنها بیشتر از کهکشان ماست. بر اساس مقیاس جدید فاصله‌ها، سن زمین حد اقل ۵ میلیارد سال است و این حد با حدسیات زمین شناسان در مورد سن زمین مطابقت دارد.

همچنین تلسکوپهای جدید وجود خوشه‌های کهکشانی را نشان می‌دهد. کهکشان ما نیز ظاهرا جزیی از یک خوشه محلی است که شامل ابرهای ماژلان، کهکشان امرأة المسلسله و سه‌ها، کهکشان کوچک نزدیک آن و چند کهکشان کوچک دیگر هست که روی هم رفته نوزده عضو را تشکیل می‌دهند.

اگر کهکشانها خوشه‌ها را و خوشه‌ها نیز خوشه‌های بزرگتری را تشکیل می‌دهند، آیا می‌توان گفت که جهان و به تبع آن فضا، تا بینهایت گسترده شده است؟ یا اینکه چرا برای جهان و چه برای فضا انتهایی وجود ندارد؟ در هر حال، دانشمندان با وجود اینکه با تخمین می‌توانند تا فاصله ۹ میلیارد سال نوری، چیزهایی را تشخیص دهند، ولی هنوز هم نشانه‌ای از پایان جهان پیدا نکرده‌اند.

انقلاب علمی

نقشه‌های گالیله و مشاهدات او از ماه نشان داد که سطح ماه دارای کوه‌است.

طی دوران رنسانس، نیکلاس کوپرنیک مدل خورشید محوری را برای سامانه خورشیدی (منظومه شمسی) پیشنهاد کرد. گالیلئو گالیله و ژوهانس کپلر پیشنهاد وی را بسط داده و آن را اصلاح کردند. گالیله تلسکوپ را اختراع کرد تا بتواند مشاهدات خود را به صورت دقیق تری انجام دهد.

کپلر اولین کسی بود که با بیان اینکه خورشید در مرکز قرار دارد و بقیه سیاره‌ها به دور آن می‌چرخند مدل تقریباً کاملی را ارائه کرد. با این وجود کپلر نتوانست برای قوانینی که ارائه نمود نظریه‌ای تهیه کند. در نهایت ایزاک نیوتن با ارائه قوانین حرکت اجرام سماوی و قانون گرانش حرکت سیاره‌ها را توصیف کرد. نیوتن مخترع تلسکوپ انعکاسی است.

کشفیات جدید باعث شد که ابعاد و کیفیت تلسکوپ بهبود بیابد. نیکلاس لوییس لاسیل نقشه‌های بیشتری از موقعیت ستارگان در فضا را ارائه نمود. ویلیام هرشل نقشه گسترده‌ای از خوشه‌های سماوی و تهیه کرد و در سال ۱۷۸۱ توانست سیاره اورانوس را کشف کند که اولین سیاره کشف شده توسط انسان محسوب می‌شود. در سال ۱۸۳۷ برای اولین بار فردریش بسل فاصله ستاره ۶۱ دجاجه را مشخص کرد. در قرن نوزدهم میلادی، توجه دانشمندانی چون لئونارد اولر، الکسیس کلاد کلایرات و جین دالمبرت به مسئله سه جسمی باعث شد پیش بینی‌های دقیق تری در مورد حرکت ماه و ستارگان انجام شود. ژوزف لوییس لاگرانژ و پیرسیمون لاپلاس این کار را تکمیل کردند و میزان انحراف اقمار و سیاره‌ها از وضعیت اصلی‌شان را تخمین زدند.

با اختراع طیف نگار و عکاسی افق‌های جدیدی به روی اخترشناسی باز شد. در طی سال‌های ۱۸۱۴ و ۱۸۱۵ ژوزف وان فرانوفر در طیف نور خورشید حدود ۶۰۰ نوار را مشاهده کرد و در سال ۱۸۵۹، گوستاو کیرشهف این نوارها را به حضور عناصر مختلف در جو خورشید نسبت داد. معلوم شد که بقیه ستارگان به ستاره منظومه شمسی (خورشید) شباهت زیادی دارند اما در ابعاد مختلف و با دماها و عناصر درونی متفاوتی دیده می‌شوند . قرار داشتن زمین در کهکشان راه شیری، به عنوان مجموعه‌ای از ستاره‌ها و سیاره‌ها، در قرن بیستم کشف گردید و هم‌زمان وجود دیگر کهکشان‌های خارجی در فضا تأیید شد و بلافاصله پدیده انبساط عالم عامل اصلی وجود فاصله زیاد بین زمین و دیگر کهکشان‌ها اعلام شد.

همچنین در اخترشناسی مدرن وجود اجرام خارجی زیادی مانند اختر نماها، و کهکشان‌های رادیویی را تأیید کرد و با استفاده از این مشاهدات نظریه‌های فیزیکی ارائه نمود که برخی از آنها این اجرام را براساس اجرام دیگر مانند ستاره‌های نوترونی و سیاه چالهها توصیف می‌کنند. کیهان‌شناسی فیزیکی در طی قرن ۲۰ میلادی پیشرفتهای زیادی را تجربه کرد و نظریه مهبانگ (بیگ بنگ یا انفجار بزرگ) براساس شواهد کشف شده در علوم اخترشناسی و فیزیک مانند تشعشعات پس زمینه‌ای مایکرویو کیهانی، قانون هابل و تشکیل هسته مهبانگ قوت یافت.

مشاهدات اخترشناسی

وری لارج ارای در نیو مکزیکو، نمونه‌ای از یک رادیو تلسکوپ. رادیو تلسکوپ‌ها یکی از ابزارهای مشاهده کیهان هستند که توسط اخترشناسان به کار می‌روند

در بابل و یونان باستان، اخترشناسی بیشتر اخترسنجی بود و موقعیت ستاره‌ها و سیاره‌ها در آسمان مورد توجه زیادی قرار داشت. بعدها، تلاش‌های اخترشناسانی چون آیزاک نیوتن و یوهانس کپلر علم مکانیک سماوی را پدید آورد و اخترسنجی بر پیش بینی حرکت آن دسته از اجرام سماوی که میانشان نیروی جاذبه گرانشی وجود داشت تمرکز یافت. این پیشرفت به طور خاص در مورد منظومه شمسی به کار گرفته شد. امروزه موقعیت و حرکت اجرام به آسانی تعیین می‌شود و اخترشناسی مدرن بر مشاهده و درک طبیعت فیزیکی اجرام سماوی تأکید دارد.



تاريخ : شنبه 13 آبان 1391برچسب:, | 16:34 | نویسنده : arian


اخترشناسی علم بررسی موقعیت، تغییرات، حرکت و ویژگی‌های فیزیکی و شیمیایی پدیده‌های آسمانی از جمله ستارگان، سیارات، دنباله‌دارها، کهکشانها و پدیده‌هایی مانند شفق قطبی و تشعشعات پس زمینه‌ای فضا می‌باشد که منشاء آنها در خارج از جو زمین قرار دارد. این رشته با رشته‌هایی مانند فیزیک، شیمی و فیزیک حرکت ارتباط تنگاتنگ دارد و همچنین با رشتهٔ فضاشناسی فیزیکی (پیدایش و تکامل جهان) ارتباط نزدیکی دارد.

اگر تنها ستارگان مورد مطالعه قرار بگیرند به آن ستاره‌شناسی (Stellar Astronomy) گفته می‌شود.

اخترشناسی یکی از قدیمی‌ترین علوم است. اخترشناسان در تمدن‌های اولیه بشری به دقت آسمان شب را بررسی می‌کردند و ابزارهای ساده اخترشناسی از همان ابتدا شناخته شده بودند. با اختراع تلسکوپ، تحولی عظیم در این رشته ایجاد شد و دوران اخترشناسی جدید آغاز گردید.

در قرن ۲۰، رشته اخترشناسی به دو رشته اخترشناسی شهودی و فیزیک کیهان نظری تبدیل شد. در اخترشناسی شهودی به دنبال جمع آوری داده‌ها و پردازش آنها و همچنین ساخت و نگهداری ابزارهای اخترشناسی هستیم. در فیزیک کیهان نظری به دنبال کسب اطمینان از صحت نتایج به دست آمده از مدل‌های تحلیلی و تحلیل‌های کامپیوتری هستیم. این دو رشته در کنار یکدیگر رشته‌های کامل را ایجاد می‌کنند که اخترشناسی نظری نام دارد و به دنبال توصیف یافته‌های شهودی است. با استفاده از یافته‌های اخترشناسی می‌توان نظریه‌های بنیادین فیزیک مانند نظریه نسبیت عام را آزمایش کرد. در طول تاریخ، اخترشناسان آماتور در بسیاری از کشف‌های مهم اخترشناسی نقش داشته‌اند و اخترشناسی یکی از محدود رشته‌هایی است که در آن افراد آماتور نقشی بسیار فعال دارند و مخصوصاً در کشف و مشاهده پدیده‌های گذرا و محلی امیدوارکننده ظاهر شده‌اند. علم اخترشناسی مدرن را نباید با علم احکام نجوم (طالع‌بینی یا اخترگویی) مقایسه کنید چرا که در طالع‌بینی یا اخترگویی اعتقاد بر آن است که امور انسان‌ها با موقعیت اشیاء سماوی در ارتباط است. اگرچه اخترشناسی (Astronomy) و طالع‌بینی یا اخترگویی (Astrology) دو رشته‌ای هستند که منشأ یکسانی دارند اما اغلب متفکران بر این باورند که این دو رشته از هم جدا شده‌اند وتفاوت‌های بسیاری بین آنها وجود دارد.[۱]

عکس گرفته شده از سحابی خرچنگ توسط تلسکوپ فضایی هابل


صفحه قبل 1 2 3 4 5 ... 7 صفحه بعد